基于RBF神经网络在转炉炼钢獭报中的应用研究

    祁子怡 高坤 赵宝芳 李勇 李伟

    

    

    摘要:转炉炼钢控制目标是对终占、温度和含碳量进行预测。由于我国转炉炼钢自动化控制水平的限制,特别是动态控制水平不够高,因此需要基于RBF神经网络建立終点预报模型。其基本思路为:基于RBF神经网络局部逼近网络的特性之上,采用k-均值聚类算法确定隐藏层的中心,权值调整采用递推最小二乘法,建立基于RBF神经网络在转炉炼钢终点预报的模型。最后结合实际数据进行模型的仿真研究。结果表明经RBF神经网络预测模型的实时训练,提高了终点预报的精度。

    关键词:转炉炼钢;神经网络;k-均值聚类;最小二乘法

相关文章!
  • 融合正向建模与反求计算的车用

    崔庆佳 周兵 吴晓建 李宁 曾凡沂<br />
    摘 要:针对减振器调试过程中工程师凭借经验调试耗时耗力等局限性,引入反求的思想,开展了

  • 基于MATLAB 的信号时域采样及

    唐敏敏 张静摘要:频率混叠是数字信号处理中特有的现象,发生频率混叠后,信号会分析出错误的结果。而采样过程中,由于频率不够高,采样出

  • 卫星天线过顶盲区时机分析

    晁宁+罗晓英+杨新龙<br />
    摘 要: 分析直角坐标框架结构平台和极坐标框架平台结构星载天线在各自盲区状态区域附近的发散问题。通过建