浅析空压机系统节能改造方案

    孙煜晗 张显威

    摘 要:空压机作为制造厂最常用的设备之一,其所产生的廉价、适用的压缩空气能源倍受许多家企业青睐。根据某企业统计,空气压缩系统总成本中,运转能源消耗费用占约75%,压缩系统初期购置费用仅占总成本的约12%,其高额的运转能源消耗费用无形中增加了企业的运营成本;更为严重的是,空压机主机磨损、小功率多台设备并联供气、管路布置不合理等均可造成巨大的能源浪费。因此设计一套安全可靠、节能高效、压力稳定的空气压缩系统已成为企业的迫切需求。

    关键词:空压机;能源浪费;节能高效

    DOI:10.16640/j.cnki.37-1222/t.2019.08.011

    1 空压机改造前运行状况

    空压机系统是某公司的生产动力辅助设备,其能源消耗达到企业总能耗的15.6%;合成车间低压空压系统主要包括6台90kW单级螺杆机空压机及其冷干机等设备,运行方式为4用2备。目前该车间压缩空气系统老旧,使用年限较长致使主机磨损,排气量降低、设备利用率低下;控制仍采用早期手动控制方式,加卸载靠上下限设定压力运行,压力偏高区域段运行;单级压缩螺杆空压机组,输入比功率较高而利用率低,不属于国家节能认证设备;另外整个系统管网布置混乱,弯头较多且不符合规范要求,造成额外的压力损失;以上造成了电能浪费。经现场实测,该空压机系统加载率为86%-92%,运行压力在5.9-6.8KPa,比功率为8.2kW/m3/min,此比功率高于GB19153-2009《容积式空气空压机能效限定值及能效等级》中“一般用喷油式单螺杆空压机的能效等级”3级要求,属于高能耗设备,因此进行改造是很有必要的。

    2 节能改造方案分析

    (1)整合节能改造。根据现有生产用量以及后续的增量计算,未来将运行6台空压机,造成没有备用设备的生产安全隐患,同时能源浪费扩大化,对现有6台空压机进行整合,选用3台220kW两级压缩空压机设备替换,减少每台设备单独经过独立的过滤系统时会造成一定的压力损失,避免引发管网压力偏低而压缩机供气压力升高,降低电力消耗,满足用气终端供气要求。

    (2)高效设备节能改造。改造后空压机为两级压缩永磁变频空压机,主机采用大小不同的两组螺杆转子,实现合理的压力分配,降低了每次压缩的压缩比。比功率达到5.81kW/m3/min,为一级能效机组。改造后运行方式为2用1备,其中1台为变频控制,运行时为1工频与1变频配合,根据现场的实际用气按需输出,变频智能调速恒压供气,保障工频一直处于加载状态,避免空压机频繁加卸载,保护空压机,启动时减轻电网的负荷,同时变频和工频可切换(变频故障时不影响机器使用)。将输出压力设定在恒压输出(精确到0.1Bar)可节省过压造成的浪费,同时延长气动工具的寿命,提高输气质量,既保障了稳定生产又能达到能效最大化。

    (3)智能化改造。改造后空压机使用智能管理系统,可将处于各地的空压机通过互联网加入到云计算平台,可实时监控系统下的空压机,发现空压机运行中存在的问题,能够查询完整的报警历史曲线,以便对故障进行推断和预防,提供空压机的节能分析报告,可为后续发现节能改造空间,降低运行成本,提供技术支持。

    (4)供气管道改造。通过系统性的规划设计,每条管路、弯头及辅助装置配置更加合理,减少每条供气管路的压力损耗,同时采用更加节能的铝合金代替原无缝钢管管道,其防腐性可将泄露的风险降到最低,减少不必要的浪费;铝质内光滑表面能以更少压降提供更多的空气,从而显著的降低运行成本,保障用气末端的压力。

    3 节能效果及经济效益分析

    (1)节能改造前用气成本。该车间空压机系统每立空气耗电0.136kW,24小时运行,每天压缩空气预计用量为12.44万立,耗电量为1.69万kWh,每年运行330天,电价每度0.63元。

    每年电费=年用电量×电价=1.69×330×0.63元/kWh=351.73万元/年。

    (2)空压机系统改造后的效益。改造后空压机比功率为5.81kW/m3/min,每立空气耗电0.097kW,每立空气可节电0.039kW,每天可节省电费3056.51元。

    每年节省电费=3056.51×330=100.86万元/年。

    4 改造后优点

    (1)安全可靠。空气主要用于制取氮气和仪表气源,一旦出现问题会造成不良影响。改造后空压机采用大转子低转速主机、角接触球高效轴承,可靠性更加稳定。运行方式改为2用1备,联合控制,保障紧急停机或故障的供气稳定。同时采用双回路供电,进一步提升供气安全。

    (2)节能降耗。改造后节能率达到28.68%,有效降低空气运行成本和维护成本,在医药行业市场压力逐渐增大的环境下,有效降低成本,可增加市场竞争力。

    (3)恒壓供气。由于改造后是1工频与1变频配合,变频控制具有精确的压力控制能力,使压力-转速-功率达到动态平衡,空气压力输出与用户需求的气量相匹配,使管网的系统压力变化保持在要求范围内,有效地提高了工况的质量。

    (4)节省人工。由两个车间空压站合并为一个集中供气的空压站,可减少一个站人工,同时实现智能控制以后,能够远程实时监测空压机运行状态,减少员工劳动强度。

    (5)降低噪音。改造后空压机采用低噪音主机,低转速离心风扇以及变频油冷风扇,同时对壳体和压缩机进气消音,噪音与原系统比较下降约20至25分贝。

    5 结束语

    空压机系统做为公司的生产辅助设备和动力设备,其稳定性和运行成本直接关乎公司的效益。改造后空压机系统既实现安全、可靠、恒压供气,又提高空压机运行效率,达到最佳节能效果,进一步提升公司市场竞争力。

    参考文献:

    [1]田郭毅.空压机节能运行措施探讨[J].内江科技,2018(06).

    [2]宋韧,刘淑婷.空压机节能改造新技术应用研究[J].资源节约与环保,2012(06).

    [3]杨银初,何海岗,王志艺,余琳玲.基于双永磁变频两级压缩技术的空压机节能改造[J].机电工程技术,2018(03).

    作者简介:孙煜晗(1988-),女,辽宁鞍山人,本科,助理工程师,研究方向:空压站设计。

相关文章!
  • 融合正向建模与反求计算的车用

    崔庆佳 周兵 吴晓建 李宁 曾凡沂<br />
    摘 要:针对减振器调试过程中工程师凭借经验调试耗时耗力等局限性,引入反求的思想,开展了

  • 浅谈高校多媒体教育技术的应用

    聂森摘要:在科学技术蓬勃发展的今天,我国教育领域改革之中也逐渐引用了先进技术,如多媒体技术、网络技术等,对于提高教育教学水平有很

  • 卫星天线过顶盲区时机分析

    晁宁+罗晓英+杨新龙<br />
    摘 要: 分析直角坐标框架结构平台和极坐标框架平台结构星载天线在各自盲区状态区域附近的发散问题。通过建