浅谈岩土工程勘察
摘要:本文从岩土工程的定义、范围、岩土工程与相邻专业之间的关系,指出了岩土工程对自然条件的依赖性、条件的不确定性、参数的不确定性、测试方法的多样性分析了现今市场经济条件下岩土工程勘察的特点。
关键词:市场经济;岩土工程;勘察
1 岩土工程的定义
中国大百科全书定义为:“土木工程的一个分支,以工程地质学、岩石力学、土力学与基础工程为理论基础,涉及岩石和土的利用、整治和改造的一门技术科学。”
专家定义为:“土木工程的一个分支,研究岩土体(水)作为支承体、荷载、介质或材料,必要时对其改良或治理的一门工程技术。”
以上表述方法虽不完全一致,但主要方面是相似或相同的。表现在:第一岩土工程是土木工程的一个分支;第二研究对象是岩石和土,包括岩土中的水;第三是一门技术科学或工程技术。
2 新时期岩土工程的外延
岩土作为支承体:房屋建筑、道路、桥梁、弃渣场、各种大型设备等等,都建造在岩土体上,岩土体作为地基,作为支承体,研究的主要问题是承载力和变形问题、稳定问题。
岩土作为荷载或自承体:边坡工程、基坑工程、露天采矿工程等地面工程开挖,隧道、地下洞室等地下工程开挖,面临的是另一类稳定和变形问题。这时,岩土体担任的角色, 既可能是荷载,也可能是自承体。同时,地下水的时空分布状态常常具有举足轻重的影响。
岩土作为材料:填方工程,特别是大面积高填方、填海造陆,要用大量岩土作为回填材料;水工围堰、水利大坝、填筑路堤等也用岩土作为当地材料,就近取材。这些工程除了研究其稳定和变形等特性外,岩土材料的质量、数量、运距和施工质量控制是主要的岩土工程地质问题。
地质灾害的防治:岩溶、塌陷、崩塌、滑坡、泥石流、地面沉降等地质灾害,对工程构成严重威胁,防治工程必须针对具体地质条件和地质演化规律进行设计和施工。场地和地基的地震效应也是岩土工程的一部分。
环境岩土工程:随着人们对环保意识的重视,地质和水文地质环境的评价、废弃物的卫生填埋、土石文物的保护等等,都涉及复杂的环境岩土工程问题,环境岩土工程正日益受到更大的重视。
以上各类工程,不仅涉及天然岩土,还包括各种人工土,包括对天然土的加固和改良,利用排水、压实、加筋、改性、注浆、锚定、设置增强体等人工改造方法,改变岩土体的强度、变形和渗透等性能。岩土加固和改良是岩土工程的重要组成部分,也是近年来新兴起来的一门新的岩土工程技术。
3 岩土工程和其它专业的关系
3.1 岩土工程与工程地质的关系
二者的区别:工程地质是地质学的一个分支,是研究与工程建设有关地质问题的科学。工程地质学的产生源于土木工程的需要,其本质是一门应用科学;岩土工程是土木工程的一个分支,其本质是一门工程技术。从事工程地质的是地质专家(地质勘察师),侧重于研究地质现象、地质成因和演化过程、地质规律、地质与工程的相互作用;从事岩土工程的是工程师,关心的是如何根据工程目标和地质条件,建造满足使用功能要求和安全要求的工程或工程的一部分,解决工程建设中的岩土技术问题。因此,无论学科领域、工作内容、关心的问题,两者都是有区别的,各自的侧重点不同。
但是,二者的关系又非常密切。有人说,工程地质是岩土工程的基础,岩土工程是工程地质的延伸,虽然不一定十分准确,但有一定道理。岩土工程师面临的岩土材料,无论性能和结构,都是自然形成的,都是经过了漫长的地质历史时期,是多种复杂地质作用下的产物。对岩土的性能和结构,只能通过勘察来查明,而又不能完全查明。一些关键性的问题,需根据地质规律推测或预测。尤其在地质构造复杂的山区,有经验的工程地质学家,通过大量的地面地质调查,综合分析就可大致判断、推断地质构造的框架、轮廓,利用物探、钻探、槽井探等勘探手段揭示,由粗而细,由浅入深,构画出工程地质模型。没有地质学基础,哪能识别断层、裂隙?哪能识别软弱夹层和结构面的空间分布形态?哪能说清地下水的赋存条件和补给、径流、排泄的运动规律?如果要开挖隧道,哪些地段会冒顶?哪些地段会突水?在地质构造复杂地区,离开了工程地质专家,可以说土木工程寸步难行。
3.2 岩土工程和结构工程的关系
岩土工程和结构工程关系密切,这是显而易见的。无论房屋结构或桥梁结构,都建造在地基上。地基是否稳定,直接影响结构的安危;地基是否会产生过量变形,直接影响结构的使用功能,产生的次生应力可能使结构超过设计极限。地基出了问题又很难补救。因此结构工程十分关心地基的稳定和变形。现在,一般地基设计均由结构工程师考虑上部结构要求统一完成,只有复杂地基基础问题或需专门处理的地基才要求岩土工程师参与。同样,岩土工程师在进行地基的勘察设计时,必须详细了解结构的型式、荷载及其分布,特别是基础的型式和刚度,了解对地基变形的限制要求,以便有的放矢。岩土工程师与结构工程师的密切配合至关重要。
结构和地基是一个整体,相互作用,相互影响。地基的变形会改变结构的应力,结构的荷载分布和不同刚度会产生不同的地基变形。人们常常用调整基础和结构刚度的办法来适应地基变形,地基、基础和上部结构的协同作用分析是当前的热门话题。反过来,也可通过地基处理提高地基的承载力和刚度来适应上部结构的要求。
岩土工程与结构工程,你中有我,我中有你,互相搭接,互相重叠的例子不胜枚举。例如桩基础,作为结构的延伸,是结构的一部分,但桩基的承载力和变形则主要取决于岩土,与岩土的关系更为密切。结构工程师应当具备必要的岩土知识,岩土工程师也必须具备必要的结构知识。
4 岩土工程的主要特点
岩石的裂隙性和土的孔隙性是岩石和土区别于混凝土、钢材等人工材料的主要特点。
4.1 岩石的裂隙性
岩石总是或稀或密、或宽或窄、或长或短地存在着各种各样的裂隙,这是岩石区别于混凝土的主要特点。这些裂隙有的粗糙不平,有的光滑;有的平直,有的弯曲;有的充填,有的不充填;有的产状规则,有的规律性很差。裂隙的成因复杂多样,有岩浆凝固收缩形成的原生节理,有沉积间断形成的层理,有构造应力形成的构造节理,有表生作用形成的卸荷裂隙和风化裂隙,还有变质作用形成的片理、劈理等等,在岩石中构成极为多样非常复杂的裂隙系统。人们将岩石和裂隙视为一个整体称为“岩体”,将裂隙概化为“结构面”。搞清结构面的产状、参数和分布,是岩土工程勘察设计的重点,也是难点。
4.2 土的孔隙性
根据土力学解释:土是一种散体结构的材料,存在孔隙。对于饱和土是固、液两相;对于非饱和土,是固、液、气三相。于是产生了有效压力和孔隙压力;孔隙压力又有孔隙水压力和孔隙气压力。在饱和土中,由于孔隙水压力的增长和消散,不同的加荷速率地基承载力不同;是否及时支撑, 对软土基坑稳定有不同的表现;渗透系数和地层组合的差别, 导致基础沉降速率的差别等等。饱和土中的超静水压力可导致挤土效应,使桩被挤断、挤歪和上浮;地震时的超静水压力导致砂土和粉土液化。非饱和土的孔隙气压力形成基质吸力,基质吸力随着土中含水量的增加而降低,因而是不稳定的。膨胀土和黄土随湿度的增加而强度显著降低,非饱和土基坑雨季容易发生事故,花岗岩残积土边坡暴雨容易发生浅层滑坡,都和基质吸力降低有关。总之,把握好孔隙压力是岩土工程的重要关键。
虽然岩土工程具有自身的特点,岩土工程计算不精确的原因有地质条件、计算模式、计算参数三方面,尤其是计算参数最难把握。故首先要做好勘察,掌握地质条件;其次是正确选用公式和软件,并充分了解其适用条件和可能的偏差;还要强调信息化施工和动态设计。事先的定量计算一般只是一种估算,只有原型实测最可信。监测不仅是保证安全的重要措施,同时也是最可靠的科学实验。
参考文献
[1]《岩土工程基本术语标准》(GBT50279-1999).
作者简介:吕迎春,(1976.6-),1999年7月毕业于华北水利水电学院水文地质与工程地质专业,毕业后一直从事本专业至今。